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Abstract—The (6R*,9S*,11S*) and (22S*,23R*,27R*,31R*) stereochemistry, respectively, of the tetrahydropyranyl and spiroac-
etal moieties in bistramide A (1) have been established by stereoselective syntheses and high field NMR comparisons. Routes to
the �-amino acid moiety are outlined. © 2002 Elsevier Science Ltd. All rights reserved.

Didemnid ascidians (tunicates) are rich sources of bio-
logically active compounds,1 and the colonial ascidian,
L. bistratum Sluiter, has provided five structurally
related compounds, bistramides A–D and K.2–6 Bis-
tramide A (Fig. 1), which is identical to bistratene A,3

exhibits potent anti-tumour activity in vitro, is cell
permeable and is the only described specific activator of
protein kinase C�, a PKC isoform. All PKCs are
involved in the transduction of signals for cell prolifera-
tion, differentiation and apoptosis, processes highly
relevant to cancer therapy. Bistramides B, C and D
differ from A with respect to the oxidation levels in the
terminal C2–C4 and C36–C39 regions.

The bistramides A–D incorporate tetrahydropyran and
spiroacetal moieties linked peptidically via a �-amino
acid unit.2–6 Bistramides A–D and K appear to be
single stereoisomers, but the NMR2–6 data had not
been analysed from a stereochemical perspective. We
now describe syntheses and NMR data which together
establish the stereochemistry of the ring systems, and
provide sub-structures for eventual linkage to form
bistramide A and other isomers.

Our 13C and 1H NMR assignments for bistramide A
(750 MHz) agree with those of Ireland,6 and the major
NOEs are summarised below for the tetrahydropyranyl
and spiroacetal sub-structures 2 and 3, respectively.
Key vic-1H–1H coupling constants are consistent7 with
these structures and the portrayed stereochemistry viz

(6R*,9S*,11S*) for 2 and (22S*,23R*,27R*,31R*) for
3 (Fig. 2).8

Comparative NMR studies of synthesised, retro-syn-
thetically derived fragments (see Fig. 1) verified these
conclusions. With respect to the THP fragment, the
sequences in Scheme 1, utilising either Hg(II)- or
Pd(II)-mediated cyclisations of hydroxyalkenes, pro-
vided 10 and 10a along with three other isomers. The
trends in 13C chemical shifts for the separable isomers
are intelligible in terms of axial and equatorial sub-

Figure 1. Bistramide A (1).

Figure 2. Observed NOEs.* Corresponding author.
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Scheme 1. (a) (i) 1,3-Dithiane, BuLi, (70%); (ii) DHP, PPTS, DCM; (iii) MeI, CaCO3, (65%); (iv) Ph3P�C(CH3)CO2Et; (v) H2

Pd/C; (vi) DMP, H+; (vii) LiAlH4 (72%); (viii) TPAP, NMO; (ix) Ph3P�CHCO2Et, (80%); (x) H+, MeOH; (xi) HgOAc2, H+,
NaBH4 (55%); (xii) TPAP, NMO; (xiii) In, allyl bromide; (xiv) TPAP, NMO, Al2O3 (neutral) (95%). (b) (i) Allylbromide, Zn,
THF–H2O (NH4Cl) (85%); (ii) PdCl2·2MeCN, CuCl2, MeOH, CO (1 atm) (81%); (iii) O3, DCM, DMS, −78°C; (iv) In, allyl
bromide; (v) Swern Ox-isomerisation (62% over three steps).

Table 1. 13C and 1H NMR data for tetrahydropyran 10, spiroacetal 17 and corresponding positions in bistramide A

1 2 3 4 5Carbon position 6 7 8 9 10 11 12

18.4 144.6 132.1 198.8 45.2 64.8Bistramide A 30.4�C 26.5 33.3 17.1 74.8 32.3
1.90 6.88�H 6.09 – 2.88, 4.18 1.61, 2.73,1.58, 4.041.89 0.84

2.111.271.342.50
18.2 143.1 132.4 198.8Isomer (10) 45.8�C 66.9 30.5 26.5 32.6 16.5 74.1 33.0

�H 1.87 6.81 6.11 – 2.76, 4.09 1.74, 2.69,1.61, 4.271.93 0.80
2.331.371.282.50

20 21 22 23 24 25 26Carbon position 27 28 29 30 31
25.3 30.4 74.3 34.9 18.0 27.9�C 36.1Bistramide A 95.5 35.4 19.2 31.3 69.1
1.80, 1.56,1.70, 1.38,3.12 1.29 0.78 1.80,1.51,�H 1.57, 3.42–

1.34 (Me) 1.511.51 1.111.42 1.351.44
28.5 29.5Spiroacetal (17) 74.4�C 34.4 17.8 27.8 36.1 96.0 35.0 19.1 32.7 65.3

�H 1.79, 1.75, 3.663.21 1.36 0.82 1.56,1.57, 1.83,1.61, 1.52,–
1.47 1.511.46 1.151.35(Me)1.61 1.46

stituent induced shifts in tetrahydropyrans, and are
supported by crucial vic-1H–1H coupling constants.9

The NMR data for isomer 10 along with the data for
the relevant portion of bistramide A are shown in Table
1 and confirm the stereochemistry depicted in 2. The
data for the other isomers provide inferior matches.

For the spiroacetal unit, the open chain keto-diol pre-
cursor was configured so that spirocyclisation would
provide that diastereomer deduced from the NMR
spectra to be present in bistramide A. Thus, the proce-
dure in Scheme 2 delivers a single enantiomer of alco-

hol 16,14 which on chain extension provided 17. This
approximates the C-19–C-32 portion of bistramide A.
The NMR data for 17 and bistramide A are also
summarised in Table 1 and for the system from C-21 to
C-30 the agreement is outstanding. Coupling constants
also match very well.15 Thus, the (22S*,23R*,
27R*,31R*) stereochemistry of the C-21–C-32 spiroac-
etal portion of bistramide A is confirmed.

Aldol methodology has been employed to deliver the
�-amino acid fragment.16 For example, the boron
enolate17 (nBu2BOTf) (Scheme 3a) provides syn-aldol



OH
O

OOH
O

O
OTHPOO

O
OTHP

N
N

D

(15) (17)(16)

[α]22 64 (c 0.4, CHCl3)

Ref.12

H

Hi, ii iii iv, v,  vi

O

N

O

O
NR2

OR1O

N

O

O
O

NR2
OR1O

(18) (19) (20)
(a)
(b)

(R1= H,

 R2=phthalimido)

J=7Hz
J=5.5Hz
J=5.0Hz

(R1= H, R2=Phth)
(R1= OAc, R2=H2)

i
(a)

[α]22 9.1 (c 0.37, CHCl3) (20a)
D

ii, iii, iv

R2NCH2CHO
R2N

OH
R2N

O

OAc O

R2N
O

OAc O(R2=phthalimido)
+

i ii, iii, iv

v
(b)

(X-ray)(21) (22) (23)

P. O. Gallagher et al. / Tetrahedron Letters 43 (2002) 531–535 533

Scheme 2. (i) BuLi, THF, HMPA, 2,2-diethyl-4-(S)-(2-iodo-1-(R)-methylethyl)-[1.3]dioxolane;13 (ii) SiO2 (48%, two steps); (iii)
THF, H2O conc. HCl (59%); (iv) Swern Ox., Ph3P�CHCO2Et (in situ); (v) H2 Pd/C (47%, three steps); (vi) LiAlH4 (55%).

Scheme 3. (a) (i) iPr2NEt, DCM, 0°C, nBu2BOTf, 0°C, R2NCH2CHO (65%); (ii) NaOMe, MeOH (75%); (iii) Ac2O, pyridine; (iv)
NH2NH2·xH2O, EtOH (50%). (b) (i) CH3CH�CHCH2Cl, Zn, THF–H2O (NH4Cl) (87%); (ii) Ac2O, Py, (81%); (iii) KMnO4/H2O–
C6H6, HOAc, TBAI; (iv) CH2N2, ether (52% over iii and iv); (v) HPLC, hexane–EtOAc.

(19) (Jvic=7 Hz) and thence ester 20a, with [� ]D22 9.1 (c
0.37, CHCl3). The lithium enolate (LDA) furnished an
aldol mixture (2.5:1) with the syn isomer, alternative to
19, predominating (J=10.5 Hz).18 The highly regio-
selective Zn-mediated �-methylallylation19 of protected
�-aminoethanal (Scheme 3b) followed by oxidation20 of
the protected homoallyl alcohol 21 and esterification
provided the racemic, separable syn and anti �-amino
esters 22 and 23 (1:1). The stereochemistry of 22 (see
Scheme 3b) was confirmed by X-ray analysis.21 The
3J2–3 values were ca. 5.0–7.0 Hz for derivatives of the
syn-ester and 7.8 Hz for the anti-ester, with the corre-
sponding value (3J15–16) in bistramide A being 5.5 Hz.

Overall, the data require that the (6R*,9S*,11S*) stereo-
chemistry for bistramide A applies also to bistramide C
and the (22S*,23R*,27R*,31R*) stereochemistry is
very likely in bistramides B, C, D and K22 also. Further
synthetic endeavours with respect to the spiroacetal
appended with the C32–C40 side chain, and studies of
the hydrolytically derived fragments from bistramide A
are being undertaken and will be described at a later
date.23
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